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FUZZY NORMAL CONGRUENCES OF INVERSE
SEMIGROUPS.
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ABSTRACT. In this paper we introduce the notions of fuzzy kernel, fuzzy
trace of a fuzzy congruence on an inverse semigroup, give some of their
properties in connection with fuzzy normal congruences. As a contin-
uation of these works, we define a fuzzy normal congruence as a fuzzy
relation and characterize fuzzy normal congruences in the framework of
fuzzy relations.
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1. INTRODUCTION

The study of fuzzy relations began with Sanchez[7], Later Nemitz[4] and
Murali[3] studied the concept of fuzzy equivalence relations. The compat-
ibility of fuzzy equivalence relations with underlying algebraic structures
was one of the ways to introduce fuzzy quotient structures, this was done
by Samhan|[6] when he introduced fuzzy congruences on semigroups. C.H.
Seo, K.H. Han, Y.O. Sung, H.C. Eun in [8] characterize fuzzy difunctional
relations and prove some properties in connetion with fuzzy difunctional
relations. Sung[9] obtain several results which are analogs of some basic
theorems of group theory.

In the present note, we carry on the investigation of fuzzy normal congru-
ences on inverse semigroup S, by introducing the notions of fuzzy kerneal,
fuzzy trace of a fuzzy congruence and characterize fuzzy normal congruences
in the framework of fuzzy relations. Throughout I denotes the closed unit
interval [0,1], S an inverse semigroup and Ej the set of all idempotents in S.
All fuzzy relations are map R : X x X — X. Forx,y € I, xVy = maz {z,y}
and x x y = min {z,y}. If R and S are two fuzzy relations on a set X, then
R C S means that R(z,y) < S(z,y) for all z,y € X.

2. PRELIMINARIES

In this section we review some definitqions and results that will be needed
in the sequel. For details we refer to [1, 4, 5].

Definition 2.1. Let G be a group. A fuzzy subset f of G is called a fuzzy
subgroup of G if.

(1) f(zy) = f(@) A f(y) for all z,y of G

(2) f(z=Y) = f(x) for all v of G.
Definition 2.2. Let G be a group. A fuzzy subgroup f of G is called a fuzzy
nomal subgroup of G if f(xy)=f(yz) for all z, y of G.
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Definition 2.3. Let R and S be two fuzzy relations on a set X. Then the

product RS is defined by RS(zy) = \/ (R(z,z) N R(z,y)) for all (z,y) €
zeX

X x X.

Definition 2.4. Let X be a nonempty set. and let R be a fuzzy relation on
X. Then R is called a fuzzy equivalence relation on X if and only if

(1) R is fuzzy relflezive, i.e, R(z,x) =1 for all z € X.

(2) R is fuzzy symmetric, i.e, R~ = R.

(3) R is fuzzy transtive, i.e, RR C R.
Definition 2.5. Let X be a semigroup. A fuzzy relation R on X is zalled
fuzzy left(right) compatible iff R(tx,ty) > R(z,y) for allz,y,t € X (R(xt, yt)
> R(z,y) for all z,y,z € X).

Definition 2.6. A fuzzy relation R on a semigroup X is called fuzzy com-
patible iff R(ac,bd) > R(a,b) A R(c,d) for all a,b,c,d € X.

Definition 2.7. A Fuzzy compatible equivalence relation on a semigroup X
is called a fuzzy congruence on X.

Definition 2.8. Let R be a congruence on in a inverse semigroup S. We de-
note the fuzzy kernel of R by Kr and is defined as Kr(x) = \/ R(z,e) Vx €
ecEs

S.

Definition 2.9. A fuzzy congruence 7 on Es is called fuzzy normal congru-
ence on Ey if T(sles,s71fs) > 1(e, f) Ve, f € Es, s€S.

Definition 2.10. A fuzzy relation R is fuzzy difunctional if it satisfies the
condition RR™'R C R, which is equivalence to RR™'R = R.

3. Fuzzy NORMAL CONGRUENCCES.

In this section we characterize fuzzy normal congruences in the framework
of fuzzy relations.

Theorem 3.1. [1]. If 0 is a fuzzy congruence on S, then 0(x~ ' y~1) =
0(z,y) Yo,y € S.

Theorem 3.2. Let R be a fuzzy equivalence relation on S. Then R is a
fuzzy congruence on S iff R is fuzzy left and right compatible.

Proof. Assume that R is a fuzzy congruence on S, then we have R(zz,yz) >
R(z,y) N R(z,2) = R(z,y) for all z,y,z € X, similarly R(zz, zy) > R(z,y)
can be done. Thus this means that R is fuzzy left and right compatible.
Conversely, assume that R is fuzzy left and right compatible, then we have,

R(zz,yt) = RR(zz,yt), as R is fuzzy reflevive and fuzzy transitive
> R(xzz,yz) A R(yz,yt), as R is fuzzy transitive
= R(z,y) AN R(z,2) A R(y,y) A R(z,1)
= R(z,y) N R(z,t) for all z,y,z,t € S.

Which yields R is fuzzy compatible. This completes the proof. O
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Theorem 3.3. Let R be a fuzzy congruence on S. Then Kg is a fuzzy
subgroup on S.

Proof. We claim that Kr(x,y) > Kr(x) A Kr(y) for all z,y € S. Suppose
not, then there exist z,y € S and r > 0 such that Kg(zy) < r < Kr(x) A
KRr(y). Considering Kr(z) > r and Kgr(y) > r, these mean that there exist
e,€ € S such that R(xz,e) > r and R(y,e’) > r. On the other hand, due to
ee’ € S, we have
Kp(ay) = \/ R(xy.[)
feEs

> R(zy, e€’)

> R(z,e) A R(y, )

>

This complicts to our assumption. Further, for x € S, we have

Kgr(x)=\/ R(ze)
ecFy
= \/ Rz~ et
6EE5

= \/ R(z71e)

ecFs
= KR(CE_l).

Therefore Kp is a fuzzy subgroup on S. O

Theorem 3.4. Let R be a fuzzy congruence on S. Then Tg is a fuzzy normal
congruence on FEg.

Proof. Since R is a fuzzy congruence on S. We note that 7 is a fuzzy
congruence relation on E;. To show that 7p is a fuzzy normal congruence on
E, it suffices to show that (s~ tes, s~ fs) > 1r(e, f) for all e, f € E, and
s € S. Indeed, Tr(s tes,s 1 fs) = R(s tes,s 'fs) > R(e, f) = 7rle, f).
This completes the proof. O

Theorem 3.5. 7 is a fuzzy normal congruence on Es iff 71 is a fuzzy
normal congruence on Es.
Proof. Since 7 = (771)7!, we note that 7 is a fuzzy equivalence relation
on F, iff 771 is a fuzzy equivalence relation on E,. Assume that 7 is a
fuzzy normal congruence on Es. Then, for e, f € Es and s € 5, we have
7 (s tes, s fs) = T(s7 fs,s7es) > 1(f,e) = 7 (e, f), and so 71 is

a fuzzy normal congruence on Fy. Conversely, assume that 7! is a fuzzy
normal congruence on F,. As seen in above argument, 7 = (771)~1 is a
fuzzy normal congruence on Ej. This completes the proof. O

Theorem 3.6. Let f be a fuzzy normal subgroup of a group S with f(e) = 1.
Then the fuzzy relation Ry defined by Ry(a,b) = f(a™'b) for all a,b € S, is
a fuzzy normal congruence on Eg, where e is the identity of G.
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Proof. Let a be a element of Ej, then Rf(a,a) = f(a='a) = f(e) = 1,
and so Ry is fuzzy reflexive on Ey. For any elements a,b € Es, we have
R¢(a,b) = f(a='b) = f(b~'a) = Ry(a,b), and so Ry is fuzzy symmetric. To
show that R is fuzzy transitive, let a,b,z be any elements of Es. Then we
have,

RRg(a,b) = \/ (Ry(a,t) A Ry(t,b))
teEs

= \/ (fla™'t) A f(t"b)

teES'
< f(a™'b), as f is a fuzzy subgroup
= R¢(a,b).

Which yields Ry is fuzzy transitive on E;. Thus Ry is a fuzzy equiva-
lence relation on E,. Let a,b,x be any elements of Es, then Ry(za,xb) =
f((xa)~1(zb)) = f(a='b) = Ry(a,b). Similarly Rf(az,bx) = Ry(a,b) can
be done. This implies that Ry is a fuzzy congruence on E,. Finally, for
e,f € Es and s € S, we then have

Therefore R is a fuzzy normal congruence on Ej .
|

Theorem 3.7. [2]. Let f and g be fuzzy normal subgroups of a group S.
Then fg is also a fuzzy normal subgroup of S.

Theorem 3.8. Let f and g be fuzzy normal subgroup of a group S. Then
Ryg is a fuzzy normal congruence on E.

Proof. 1t follows from Theorem 3.6 and Theorem 3.7. d

Theorem 3.9. If R, S are fuzzy normal congruences on Es such that RS =
SR, then RS is a fuzzy normal congruence on Es.

Proof. Let x be any element of Ey, then RS(z,x) = \/ (R(z,t)AS(t,x)) >
teFEs
R(z,z) N S(xz,x) = 1, and so RS is fuzzy reflexive on Es. And we have
(RS)™! = S7IR~! = SR = RS, this means that RS is fuzzy symmetric.
In addition, (RS)(RS) = R(SR)S = (RR)(SS) C RS, hence RS is fuzzy
transitive. Thus RS is a fuzzy equivalence relation on ;. Now we prove that
RS is fuzzy compatible, let z,y,z € Es then we prove that RS(zz,zy) >
RS(z,y). Suppose not then there exist z,y,z € S and r > 0 such that
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RS(zx,zy) < r < RS(z,y). RS(z,y) means that there exists t € E4 such
that R(z,t) > r and S(¢,y) > r. On the other hand,

RS(zz, zy) = \/ (R(zx, s) A S(s,zy))
s€EEs
> R(zx, zt) N S(zt, zy) for this s = zt
= R(z,t) ANS(t,y), as R is fuzzy left and right compatible
>

This contradicts to our assumption. Which show that RS (zz, zy) > RS(x,y)
for all z,y,z € E,. Similarly, (RS)(xzz,yz) > RS(z,y) can be done. There-
fore RS is a fuzzy congruence on F,. Finally we prove that RS (s 'es, s~ fs)
> RS(e, f) for all e, f € E; and s € S. Suppose not, then there exist
e,f € Bs, s € S and r > 0 such that RS(s'es,s~'fs) < r < RS(e, f).
But RS(e, f) > r means that there exist g € F such that R(e,g) > r and
S(g, f) > r. But we have

RS(s les,s71fs) = \/ (R(s tes,g) A S(g,s™1fs))
teEs
> \/ (R(s Yes, s tgs) A S(s  gs, s71fs)) by s ' Eys € By
teEs
> R(s tes, s 1gs) A S(s Lgs, s71fs)
> R(e,g) ANS(g, f), as R, S are fuzzy compatible
>

This contradicts to our assumption, therefore RS is a fuzzy normal congru-
ence on Fj.

O

Theorem 3.10. Let S be a group. If R, S are fuzzy normal congruences on
Eg, then SR is a fuzzy normal congruence on Ej.

Proof. In view of Theorem3.9, it suffices to show that RS = SR on FEj.
Suppose not, then without loss of generality, we may assume that there exist
z,y € Es and r > 0 such that RS(z,y) < r < SR(z,y). But SR(z,y) > r
means that there exists z € E; such that S(z,2) > r and R(z,y) > r. On
the other hand, we have,

RS(z,y) = \/ (R(z,t) A S(t,y))
tEBs
> R(z,z2"y) AS(zz"ty,y) fort =x2z71y
= R(zz 'z, 227 y) A S(xz"ty, 227 y)
> R(z,y) A S(z, z)

>r.

This contradicts to our assumption, this entails RS = SR. Therefore SR is
a fuzzy normal congruence on E.
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Theorem 3.11. If R, S are fuzzy normal congruences on Es, then so is
their intersection RN S.

Proof. We note that RN S is a fuzzy equivalence relation on Es. We prove
that RN S is fuzzy compatible. Now for z,y, z € Es, we have

(RN S)(zz, zy) = R(zw, zy) A S(zz, 2y)
> R(xz,y) A S(z,y), as R and S are fuzzy left compatible
= (RN S)(e, f).

Similarly, (RN S)(zz,yz) > (RN S)(x,y) can be done. Hence RN S is a
fuzzy congruence on Es. Let e, f € E5 and s € S, then

(RN S) (s tes,s 1 fs) = R(s tes,s 1 fs) A S(s tes,s1fs)
> R(e, f) A S(e, f)
= (RN S)(e, f).

Thus RN S is a fuzzy normal congruence on Fj.
O

Theorem 3.12. Let R be a fuzzy normal congruence on Es. For a given
k €0,1], a fuzzy relation P defined by P(x,y) = R(z,y)VEk for allz,y € X,
is a fuzzy normal congruence on Ej.

Proof. For z be any element of Es, P(z,xz) = R(z,z) Vk =1, and so P is
fuzzy reflexive on Es. P(z,y) = R(x,z)V k= R(y,z)V k = P(y,z) for all
x,y € Es. This means that P is fuzzy symmetric. Let z,y be any elements
of E,, then we have

PP(z,y) = \/ (P(z,2) A P(2,y))
z2€E

= \/ (R(z,2) V k) A (R(z,y) V k)
2€Es

=\ (R(x,2) AR(z,y)) V k)

2€E;

= RR(z,y) Vk

= R(z,t)Vk

= P(z,y).
And so P is fuzzy transitive. Next let a, b, z be any elements of E, then

P(za,zb) = R(xza,zb) V k
> R(a,b) V k, as R is fuzzy left compatible

P(a,b).

Similarly P(ax,bx) > P(a,b) can be done. Finally, let e, f € E5; and s € S,
then
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P(s7les,s71fs) = R(sles,s 1fs) VK
> R(e,f)VEk
= P(e, f).

Therefore P is a fuzzy normal congruence on Fj.
|

Theorem 3.13. Let R be a fuzzy relation on a group S such that R is fuzzy
reflexive and compatible. If R is fuzzy difucntional, then R is a fuzzy normal
congruence on Ej.

Proof. To show that R is a fuzzy equivalence relation on F;. First we prove
that R is fuzzy symmetric;

R(z,y) = RR™'R(x,y), as R is fuzzy difunctional
= R(R™'R)(z,y)
= \/ (R(z,z) A \/ (R(w,2) AN R(w,y)) for z==x
2€E;s weEs
> R(z,x) A \/ (R(w,z) A R(w,y))
wELEs

=\ (Rw,z) AR(w,y))

WEES
> R(y,x) N R(y,y) forw=y
= R(y, z).
This implies that R(y,z) > R(z,y) for all z,y € Es. Similarly, R(y,z) >

R(z,y) can be done. And so R is fuzzy symmetric. Next we prove that R
is fuzzy transitive;

R(i, y) = RR_IR(:E’ y)
= \/ R(z,z) A \/ (R(w, 2) A R(w,y))
2€Es weks
> R(x,z) A \/ (R(w,z) AN R(w,y) for z==
wEEs
= \/ (R(w,z) A R(w,y))
weEs
= RR(z,y).

And so RR C R. Thus R is fuzzy transitive. Finally, let e, f € E, and
s € 9, then R(s les,s71fs) > R(es,ef) > R(e, f). Therefore R is a fuzzy
normal congruence on Ej.

U

4. ACKNOWLEDGEMENTS.

This paper is dedicated to professor Dae San Kim who will get an honor-
able retirement from Sogang University in Seoul, August of 2016.

187



188 Y. O. Sung and B. G. Son

REFERENCES

[1] F. Al-Thukair, Fuzzy congruence pairs of inverse semigroups, Fuzzy sets and systems
56 (1993), 117-122.

[2] N. Kuroki, Fuzzy congruences and fuzzy normal subgroups, Information sciences 60
(1992), 247-259.

[3] V. Murali, Fuzzy equivalence relations,Fuzzy Sets and Systems 30 (1989), 155-163.

[4] W.C. Nemitz, Fuzzy relations and fuzzy functions, Fuzzy sets and Systems 19 (1986),
177-191.

[5] H. Ounalli and A. Jaoua, On fuzzy difunctional relations, Information sciences 95
(1996), 219-232.

[6] M. Samhan, Fuzzy congruences on semigroups, Information sciences 74 (1993), 165-
175.

[7] E. Sanchez, Resolution of composite fuzzy relation equations, Inform and control 30
(1976), 38-48.

[8] C.H. Seo, K.H. Han, Y.O. Sung, H.C. Eun, On the relationships between fuzzy equiv-
alence relations and fuzzy difunctional relation, and their properties, Fuzzy Sets and
Systems 109 (2000), 459-462.

9] Y.O. Sung. Fuzzy congruences on groups, Far East J. Math 89(2) (2014), 227-237.

DEPARTMENT OF APPLIED MATHEMATICS KONGJU NATIONAL UNIVERSITY 182 SINKWAN-
DONG, KoNGJu-cITY, 314-701 KOREA
E-mail address: yosung@kongju.ac.kr and sonbg@kongju.ac.kr





